MATH 101:201 Integral Calculus with Applications to Physical Sciences and Engineering

lecture summaries

spring term 2019/2020 MWF 9:00-9:50 (Chemistry B250) Claudius Zibrowius

Integration		
M 06/01 $ 1 $ Introduction to integration (lecture given by Ant	hony Wachs)	
• Introduction: differentiation versus integration	(1.1)	
• Review: summation notation	(1.1.2)	
W 08/01 2 Definite integrals (lecture given by Anthony Wac	hs)	
• Definition: Riemann sums and the definite integral	(0.4)	
• Geometric interpretation of integrals as signed area	(1.1.3)	
F 10/01 3 Basic computations		
• Review: definite integrals as limits of Riemann sums		
• Computing integrals using areas of known shapes	(1.1.4)	
• Basic properties of the definite integral	(1.2)	
M 13/01 4 The fundamental theorem of calculus I		
• Computing integrals of even and odd functions	(1.1.4)	
• A physical interpretation of integrals	(1.1.5)	
\bullet The fundamental theorem of calculus (FTC) version 1	(theorem 1.3.1, part 2)	
• Examples: reading differentiation tables "upside-down"	(examples 1.3.11ff)	
W 15/01 \star Class cancelled due to "extreme weather" (a bit	t of snow)	
F 17/01 5 The fundamental theorem of calculus II		
• More examples: reading differentiation tables "upside-down"	(examples 1.3.11ff)	
• The fundamental theorem of calculus (FTC) version 2	(theorem $1.3.1$, part 1)	

- The FTC and the chain rule (Examples 1.3.2–1.3.6)
- More examples about how to use the FTC: in particular $\int \frac{1}{x} dx = \ln |x|$ (examples 1.3.13)
- Examples about how *not* to use the FTC: in particular, checking domains and continuity!

M 20/01 | 6 | Substitution rule for indefinite integral

• Revision: Linearity of integration and differentiation	(1.4)
• Substitution rule from chain rule for the indefinite integral;	many examples (theorem $1.4.2 \text{ff}$)
W 22/01 7 Substitution rule for definite integral and are	a between curves
• Substitution rule for definite integral; examples	(theorem $1.4.6$)
• Desmos presentation: area between curves	(see announcement on Canvas)
• Signed area versus total area between two curves; examples	(section 1.5)
F 24/01 8 Area between curves	
• Example: total area between two curves that intersect multi	ple times (see announcement on Canvas)
• Example: integration in y -direction is sometimes easier	(section 1.5)
M 27/01 9 Volumes	
• Volume = integrated area	(1.6)
• Examples: volume of cone, sphere, pyramid, torus	(1.6)
• Exercise: cones of arbitrary shapes	
W 29/01 10 Volumes (continued) and averages	
• Computation for torus (continued)	
• Volume of the perpendicular intersection of two cylinders of	unit radius
• Volume of a solid obtained by rotation about another line the	nan simply $x = 0$ or $y = 0$
• Definition and example: the average of a function	(2.2)
F 31/01 11 Work	
• Definitions and basic examples, in particular: Newton's seco	nd law and Hooke's law $(2.1.2)$
• Example: pumping water out of a conical tank	(2.1.4)
M 03/02 12 Integration by parts (IBP)	

- example on work (continued) (2.1.4)
 Theorem and many examples (1.7)
- IBP Trick 1: multiply the integrand by 1 (Examples 1.7.8 and 1.7.9)

W 05/02 | 13 | IBP (continued) and trigonometric integrals with powers of sin and cos

- IBP Trick 2: Apply IBP twice and then solve for the integral (Examples 1.7.10 and 1.7.11)
- General algorithm for solving $\int \sin^a(x) \cos^b(x) dx$ and many examples (1.8, 1.8.1)

F 07/02 | 14 | Trigonometric integrals with powers of sec and tan

• General algorithm for solving $\int \sec^a(x) \tan^b(x) dx$ and many examples (1.8.2)

M 10/02 | 15 | Trigonometric substitutions I

- The three prototypical examples: $\int \sqrt{a^2 x^2} dx$, $\int \sqrt{x^2 a^2} dx$ ad $\int \sqrt{x^2 + a^2} dx$ (1.9)
- Undoing the substitution after successful integration (1.9.3, 1.9.5, 1.9.6)
- Importance of pausing for a moment before ploughing on (example 1.9.4)

W 12/02 | 16 | Trigonometric substitutions II

- Completing the square before trigonometric substitutions (example 1.9.7)
- Integrating simple rational functions without partial fractions

F 14/02 | ★ | Midterm exam

$17-21/02 + \star$ | Midterm break

M 24/02 | 17 | Partial fractions I

• Polynomial division	(1.10)
• Factorizing quadratic polynomials by guessing the roots	(A.16)

W 26/02 | 18 | Partial fractions II

• Partial fraction decomposition in examples (1.10)

Applications of integration

F 28/02 | 19 | Numerical integration (This lecture is non-examinable.)

- Approximations via Taylor polynomials
- Approximations via midpoint rule, trapezoid rule and Simpson's rule (1.11.1–1.11.3)
- Comparison of error terms for midpoint rule, trapezoid rule and Simpson's rule (1.11.4)

M 02/03 | 20 | Improper integrals I

- Improper integrals with unbounded limits of integration (1.12.1-2)
- Improper integrals with unbounded functions (1.12.1-2)

W 04/03 | 21 | Improper integrals II

• More examples: improper integrals with unbounded functions	(1.12.2)
• Convergence tests for improper integrals	(1.12.3)
F 06/03 22 Centres of mass	
• Centres of mass: 1-dimensional case (example: centre of mass of a cone)	(2.3.1)
• Centres of mass: 2-dimensional case (example: inverted parabola)	(2.3.1)
M 09/03 23 Differential equations	
• A primer on differential equations	(2.4)
• Topical review: exponential growth	(see 3Blue1Brown)
• Separable differential equations	(2.4.1)
• Exam revision strategies (see the	he revision checklist)

Sequences and Series

W 11/03 | 24 | Sequences and series

• Definition and examples: sequences, convergence, divergence	(3.1)
• General principles and arithmetics for limits of sequences	(3.1)
• New from old: series and their limits	(3.2)
• Geometric series	(3.2)

F 13/03 | 25 | Lots of series

• Arithmetics of series, telescoping series (3.2+3.3.9/warning 3.3.3)

• Divergence test:
$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$
 (harmonic series) versus $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (Basel problem) (3.3)

— COVID-19 —

Starting Monday 16/03, all lectures are moving online for the remainder of the term. Please see Anthony Wachs's email for details.