MATH 101:207 Integral Calculus with Applications to Physical Sciences and Engineering

lecture summaries

spring term 2018/2019 MWF 16:00-16:50 (Buch A104) Claudius Zibrowius

Integration

W 02/01 1 Introduction to integration	
• The integral $\int_a^b e^x \mathrm{d}x$	(1.1)
• Geometric sum formula	(equation 1.1.3)
• Quick review: summation notation	(1.1.2)
F 04/01 2 Definite integrals	
• Definition: Riemann sums and the definite integral	(0.4)
• Geometric interpretation of integrals as signed area	(1.1.3)
M 07/01 3 Basic computations	
• Computing integrals using areas of known shapes	(1.1.4)
• Basic properties of the definite integral	(1.2)
• Computing integrals of even and odd functions	(1.1.4)
W 09/01 $ $ 4 The fundamental theorem of calculus I	
• A physical interpretation of integrals	(1.1.5)
\bullet The fundamental theorem of calculus (FTC) version 1	(theorem 1.3.1, part 2)
• Examples: reading differentiation tables "upside-down"	(examples 1.3.11ff)
F 11/01 $ $ 5 The fundamental theorem of calculus II	
• More examples: reading differentiation tables "upside-down"	(examples 1.3.11ff)
\bullet The fundamental theorem of calculus (FTC) version 2	(theorem 1.3.1, part 1)
• (FTC version 1) \Leftrightarrow (FTC version 2); proof of (FTC version 2)	

M 14/01 | 6 | The fundamental theorem of calculus III

- More examples about how to use the FTC: in particular $\int \frac{1}{x} dx = \ln |x|$ (examples 1.3.13)
- Examples about how *not* to use the FTC: in particular, checking domains and continuity!

W 16/01 | 7 | Substitution rule for indefinite integral

• A little test

• Revision: Linearity of integration and differentiation	(1.4)
• Substitution rule from chain rule for the indefinite integral; e	examples (theorem 1.4.2ff)
F 18/01 8 Substitution rule for definite integral	
• More examples on the substitution rule for definite integrals	(theorem 1.4.2ff $)$
• Substitution rule for definite integral	(theorem $1.4.6)$
• Desmos presentation: Area between curves	(see announcement on Canvas)
M 21/01 9 Area between curves	
• Example: total area between two curves that intersect multiple	ple times (see announcement on Canvas)
• Example: integrate in <i>y</i> -direction	(1.5)
W 23/01 10 Volumes	
• Volume = integrated area	(1.6)
• Examples: volume of cone, sphere, pyramid, torus	(1.6)
• Exercise: cones of arbitrary shapes	
F 25/01 11 Volumes (continued) and averages	
• Computation for torus (continued)	
• Volume of the perpendicular intersection of two cylinders of	unit radius
• Volume of a solid obtained by rotation about another line th	an simply $x = 0$ or $y = 0$
• Definition and example: the average of a function	(2.2)
M 28/01 12 Work	
• Definitions and basic examples, in particular: Newton's second	nd law and Hooke's law $(2.1.2)$
• Examples: pumping water out of a conical and a spherical ta	unk (2.1.4)
W 30/01 13 Integration by parts	
• Theorem and many examples	(1.7)
F 01/02 14 Trigonometric integrals with powers of sin a	nd cos

• General algorithm and many examples (1.8, 1.8.1)

M 04/02 | 15 | Trigonometric integrals with powers of sec and tan

	15 Theorem and the integrals with powers of see and tan			
• Genera	al algorithm and many examples	(1.8.2)		
W 06/02	16 Trigonometric substitutions			
• The th	nree prototypical examples: $\int \sqrt{a^2 - x^2} dx$, $\int \sqrt{x^2 - a^2} dx$ ad $\int \sqrt{x^2 - a^2} dx$	$\overline{+a^2} dx$ (1.9)		
• Undoing the substitution after successful integration (1.9.3, 1.9.5, 1.9.6)				
• Importance of pausing for a moment before ploughing on (example 1.9.4)				
F 08/02	$\mid 17 \mid$ Trigonometric substitutions (continued) and partial frac	tions		
• Comp	leting the square before trigonometric substitutions	(example 1.9.7)		
• Basic	principle of integrating rational functions	(1.10)		
M 11/02	18 Partial fractions (continued)			
• Factorization and partial fraction decomposition with linear and quadratic terms (1.10)				
W 13/02	19 Review session			
• Partial fractions, FTC, Riemann sums				
F 15/02	🗙 Midterm exam			
18–22/02	★ Midterm break			
Applications of integration				
M 25/02	20 Numerical integration			
• Appro	ximations via Taylor polynomials			
• Appro	ximations via midpoint rule, trapezoid rule and Simpson's rule	(1.11.1-1.11.3)		
W 27/02	\mid 21 \mid Error terms in numerical integration+improper integrals	s I		
• Explan	nation of Simpson's Rule	(1.11.3)		
• Compa	arison of error terms for midpoint rule, trapezoid rule and Simpson	n's rule (1.11.4)		

• Improper integrals with unbounded limits of integration (1.12.1)

F 01/03 | 22 | Improper integrals II

- More examples: improper integrals with unbounded limits of integration (1.12.2)
- Improper integrals with unbounded functions (1.12.1)

M 04/03 23 Convergence tests and center of gravity (1D)	
• More examples: improper integrals with unbounded functions	(1.12.2)
• Convergence tests for improper integrals	(1.12.3)
• Centres of mass: 1-dimensional case	(2.3.1)
W 06/03 24 Center of gravity (2D) and differential equations	
• Example: centre of mass of a cone	(2.3.1)
• Centres of mass: 2-dimensional case (example: inverted parabola) (2.3.1)
• A primer on differential equations	(2.4)
Sequences and Series	
F 08/03 25 Separable differential equations and sequences	
• Separable differential equations	(2.4.1)
• Definition and examples: sequences, convergence, divergence	(3.1)
M 11/03 26 Sequences and series	
• General principles and arithmetics for limits of sequences	(3.1)
• Exam revision strategies	(see the revision checklist)
• New from old: series and their limits	(3.2)
W 13/03 27 Lots of series	
• Geometric series, telescoping series, harmonic series	(3.2+3.3.9/warning 3.3.3)

F 15/03 | 28 | Divergence test and integral test

• Main examples:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (harmonic series) and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (3.3)

M 18/03 | 29 | Integral test with remainder and comparison test

• Main examples:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ (most important one)}, \sum_{n=1}^{\infty} \frac{1}{n \cdot (\log(n))^p}, \sum_{n=1}^{\infty} \frac{\log(n)}{n} \text{ (3.3.2+3.3.3)}$$

W 20/03 | 30 | Comparison test

• Comparison and limit comparison test: more examples of the form $\sum_{n=1}^{\infty} R(n)$ for some rational function R(n) (3.3.3)

F 22/03 31 Alternating series and remainders (lecture given by John Enns)M 25/03 32 Absolute/conditional convergence, ratio test (lecture given by John Enns)W 27/03 33 Power series I		
• Definition, formula and examples: convergence radius and interval	of convergence (3.5.1)	
F 29/03 34 Power series II		
• Exam preparation: summary of convergence tests	(3.3.6)	
• Differentiation and integration of power series	(theorem $3.5.13$)	
• Examples: differentiating and integrating the geometric series	(examples $3.5.20 + 3.5.21$)	
M 01/04 35 Taylor series		
• Definition and examples: Taylor and Maclaurin series	(theorem $3.6.5$)	
• Maclaurin series: new from old via substitution	(example 3.6.10)	
W 03/04 36 Exam-type questions for Taylor series		
• Maclaurin series and limits	(3.6.4)	

• Maclaurin series and improper integrals

Good luck with the final exam!