MATH 100:101 Differential Calculus with Applications to Physical Sciences and Engineering

lecture summaries

winter term 2019/2020 MWF 10:00–10:50 (LSK 200) Claudius Zibrowius

Limits

W 04/09 $ $ 1 Introduction to differential calculus: Newton's apple			
• Observation (Newton 1666): Apples fall down!	(1.2)		
• What is velocity?			
• Linear motion and average velocities			
• Back to the apple: instantaneous velocity			
F 06/09 2 A first look at limits			
• Limits as a method to extend functions to where they are not defined	$(definition \ 1.3.3)$		
• Limits do not always exist	(example 1.3.5)		
• A limit exists if both one-sided limits exist and agree with each other	(theorem $1.3.8$)		
M 09/09 3 Arithmetic of limits			
• $\pm \infty$ as special DNE(=does-not-exist) values of limits	(definition 1.3.11)		
• Limit laws (sums, differences, products, quotients, powers, roots, rational	functions) (1.4)		
• Behaviours of $\lim_{x \to a} \frac{f(x)}{g(x)}$, where $g(a) = 0$	(1.4)		
W 11/09 \mid 4 \mid Squeezing theorem and limits at ∞			
• Calculating limits of fractions by multiplying with conjugate	(Example 1.4.16)		
• Squeezing theorem and examples	(1.4)		
• Limits at infinity (main trick: factor out the dominant term)	(1.5)		
F 13/09 5 Continuity (lecture by Jamie Juul)			
• More examples of limits at infinity: limits of type ∞/∞ and $\infty - \infty$	(1.5)		
• Definition: the absolute value $ x $ of a real number x	(1.5)		
• Definition and discussion: continuity	(Example 1.6.4)		

M 16/09 6 The IVT and a first look at derivatives	
• Intermediate Value Theorem (IVT)	(1.6)
• Newton's example revisited: slope of tangents = limit of slope of secants	(1.1 - 1.2)
derivatives	
W 18/09 7 Tangents and derivatives	
• Definition: the derivative of a function at a point	(2.2)
• Calculation of linear and quadratic functions	(2.2)
• Computing tangents	(2.3)
F 20/09 8 Arithmetic of derivatives I: sums and differences	
• 3Blue1Brown youtube channel	
• Derivative as a function and all sorts of notation	(2.2)
• Theorem: $f(x)$ is differentiable $\Rightarrow f(x)$ is continuous	(2.2)
• Derivatives of sums	(2.4)
M 23/09 9 Arithmetic of derivatives II: products and quotients	
• Derivatives of products	(2.4)
• $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = a \cdot x^{a-1}$ for any rational numbers a	(2.6)
• The quotient rule as a special case of the product rule	(2.4, 2.5, 2.6)
W 25/09 10 Arithmetic of derivatives III: exponential and trigonomet	ric functions
• Euler's number and why $y = e^x$ is such a special function	(2.7)
• Derivatives of trigonometric functions sin, cos, tan, cot, csc, sec	(2.8)
F 27/09 ★ UBC Climate Strike	
M 30/09 11 Arithmetic of derivatives IV: chain rule	
• The chain rule, why it is true and plenty of examples	(2.9)
W 02/10 12 Arithmetic of derivatives V: inverse functions and logarith	hm
• Absolute values and the chain rule	
• Logarithms and their derivatives	(2.10)
• Inverse functions	(0.6)

2/6

F 04/10 | 13 | Arithmetic of derivatives VI: Inverse trigonometric functions

• Revision strategies

• Inverse trigonometric functions and their derivatives	(2.12)
M 07/10 14 Implicit differentiation I	
• More examples for inverse trigonometric functions	(2.12)
• Logarithmic differentiation (differentiate $\log f(x) $ instead of $f(x)$)	(2.10)
• Implicit differentiation: Finding tangents to curves in the plane	(2.11)
W 09/10 15 Implicit differentiation II	
• Finding tangents to curves in the plane	(2.11)
• More examples for logarithmic differentiation	(2.10)
• Higher derivatives	(2.14)
applications of derivatives	
F 11/10 16 Rates of change	
• 5-minute test (past exam question on IVT)	
• Newton's example revisited: velocity and acceleration	(3.1)
M 14/10 ★ Thanksgiving holiday	
W 16/10 17 Exponential decay I	
• 10-minute test (gluing two functions together to geth differentiable function)	
• Exponential decay: Carbon dating	(3.3.1)
F 18/10 ★ midterm exam	
M 21/10 18 Exponential decay II	
• Exponential decay: Carbon dating (continued)	(3.3.1)
• Exponential decay: Newtons law of cooling	(3.3.2)
W 23/10 19 Exponential growth + related rates	
• Exponential decay: Newtons law of cooling (continued)	(3.3.2)
• Exponential growth: population growth	(3.3.3)

• Related rates: problem session (exercises) (3.2)

F 25/10	\mid 20 \mid Linear approximations and towards Taylor polynomials	
• Relate	d rates: problem session (continued) (exercises)	(3.2)
• Linear	and quadratic approximations of $\sin(x)$ and $\cos(x)$ at $x_0 = 0$	(3.4.1-3.4.3)
M 28/10	21 Taylor polynomials	
• Maclau	urin's polynomial: approximations of differentiable functions at $x_0 =$	= 0 (3.4.4)
• Examp	ble: Maclaurin's polynomials of $sin(x)$ and $cos(x)$	
• Definit	tion: Taylor polynomial as shifted Maclaurin's polynomial	(3.4.4)
• Examp	ble: Taylor's polynomial for $\log x$ at $x_0 = 1$	(3.4.5)
W 30/10	22 Taylor's formula and remainders	
• Summ	ation notation, Fibonacci numbers and lots of examples	(3.4.3 – 3.4.7)
• Remai	nder formula for Taylor polynomials	(3.4.8)
F 01/11	\mid 23 \mid More on remainder terms + Maxima and minima I	
• Exercis	se: $e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{k!}$ with error estimate	(3.4.8)
• Why d	o Taylor polynomials for e^x and $\log(x)$ behave differently?	(non-examinable)
• Theore	em: If the maximum value of $f(x)$ is $f(c)$ and $f'(c)$ exists, then $f'(c)$) = 0. (3.5.1)
M 04/11	24 Maxima and minima II	
• Metho	ds for finding local maxima and minima	(3.5.1)
• Using	second derivatives to determine the type of extrema	(theorem $3.5.5$)
• Critica	l points, singular points and boundary points	(3.5.1)
W 06/11	25 Mean value theorem (lecture by Keegan Boyle)	
• Theore	em: global extrema on closed intervals	(3.5.2)
• Le thé	orème de Rolle and the mean value theorem (MVT)	(2.13)
F 08/11 • Variou	26 More applications of MVT (guest lecture by Zach Goldth teaching studen s applications of the MVT	orpe, t in MATH599)

• MVT as the origin of the error term for Taylor polynomials

M 11/11 \parallel \bigstar \mid Remembrance day

W 13/11 | 27 | Curve sketching I (first derivative)

- Corollary: f'(x) = 0, f'(x) < 0, f'(x) > 0 for all $x \in (a, b)$ implies that f(x) is constant, decreasing, increasing on (a, b), respectively. (2.13)
- Corollary: f'(x) = g'(x), implies f(x) = g(x) + c for some constant c (2.13)
- Using the first derivative for graph sketching (example 3.6.2)

F 15/11 | 28 | Curve sketching II (second derivatives + asymptotes)

- Concavity and convexity (3.6.3)
- example: sketching rational functions (cp. example 3.6.14)
- example: domains need not be all of $\mathbb{R}!$

M 18/11 | 29 | Curve sketching III (symmetries)

- Even and odd functions: definition and geometric interpretation (3.6.4)
- Exercise: Taylor polynomials of even/odd functions
- Periodicity: definition, geometric interpretation and examples (3.6.4)
- Bonus: All "nice" functions can be written as sums of sin(x) and cos(x) (Fourier on youtube)

W 20/11 | 30 | L'Hôpital's rule I

- L'Hôpital's rule for " $\frac{0}{0}$ " and " $\frac{\pm \infty}{\pm \infty}$ " (3.7.1–2b)
- Variations of l'Hôpital's rule: type " $0 \cdot \infty$ " and type " $\infty \infty$ " (3.7.2c-d)
- Geometric explanation of l'Hôpital's rule using tangents

F 22/11 | 31 | L'Hôpital's rule II + Optimisation problems I

- Even more variations of l'Hôpital's rule: type " 1^{∞} ", type " 0^{0} " and type " ∞^{0} " (3.7.2e-g)
- Example: optimisation of the volume of a rectangular box (example 3.5.16)

M 25/11 | 32 | Optimisation problems II

•	Example: minimal distance between a point and a line	$(example \ 3.5.18)$
•	Exercise: Largest right circular cylinder inscribed in a sphere	

• Example: taking a photo of the Statue of Liberty (example 3.5.24)

towards integral calculus

W 27/11 | 33 | A first glance at antiderivatives (lecture notes)

• Definition and examples: antiderivatives	(4.1)
• Theorem: antiderivatives are unique up to adding a constant	(4.1)
\bullet Guessing antiderivatives by reading differentiation tables unop-əpisdn	(4.1)
• Application of antiderivatives: review of the exponential differential equation	(4.1.6)

F 29/11 | 34 | Mock exam

• Mock exam (and the solutions)

Happy exam revision and all the luck you need!