MATH 100:102 Differential Calculus with Applications to Physical Sciences and Engineering

lecture summaries

winter term 2018/2019

Tuesdays 8:00–9:30 (Math 100) | Thursdays 8:00–9:30 (Math 100)

Claudius Zibrowius

functions and limits

Th 06/09 | 1 | Introduction to differential calculus

- What is differential calculus?
- linear functions and their slopes
- functions and their graphs
- proposition: When is a subset of \mathbb{R}^2 the graph of a function? (a.k.a. vertical line test)

(0.4)

(1.1-1.2)

(1.3)

• tangents and velocity (Newton's example)

Tu 11/09 | 2 | Limits

- Newton's example (continued) (1.2)
- limits as a method to extend functions to where they are not defined (1.3)
- one-sided limits

Th 13/09 | 3 | Arithmetic of limits

• limit laws (sums, differences, products, quotients, powers, roots, rational functions)	(1.4)
• Behaviours of $\lim_{x \to a} \frac{f(x)}{g(x)}$, where $g(a) = 0$	(1.4)

- Squeezing theorem and examples (1.4)
- Limits at infinity (definition only) (1.5)

Tu 18/09 | 4 | limits at ∞ and continuity

• Limits at infinity (main trick: factor out the dominant term)	(1.5)
• definition: the absolute value $ x $ of a real number x	(1.5)
• definition and discussion: continuity	(1.6)
• Intermediate Value Theorem (IVT)	(1.6)

1/5

derivatives

Th 20/09 | 5 | tangents and derivatives

• Newton's example revisited	(2.1)
• definition: the derivative of a function at a point and all sorts of notation	n (2.2)
• calculation of various derivatives: linear functions, quadratic functions, $\frac{1}{x}$	$\frac{1}{5}, x , x^{1/3}$ (2.2)
• continuity and differentiation (example)	(2.2)
Tu 25/09 6 Arithmetic of derivatives I	
• continuity and differentiation (theorem)	(2.2)
• computing tangents	(2.3)
• Derivatives of sums, products, integer powers	(2.4, 2.6)
Th 27/09 7 Arithmetic of derivatives II	
• $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = a \cdot x^{a-1}$ for any rational numbers a	(2.6)
• The quotient rule as a special case of the product rule	(2.4, 2.5, 2.6)
• Derivatives of trigonometric functions (with proofs)	(2.8)
Tu 02/10 8 Arithmetic of derivatives III	
• The chain rule	(2.9)
• Derivatives of exponentials	(2.7)
• Inverse functions	(0.6)
Th 04/10 9 Implicit differentiation	
• Logarithms and their derivatives	(2.10)
• Logarithmic differentiation (differentiate $\log f(x) $ instead of $f(x)$)	(2.10)
• Implicit differentiation	(2.11)
• finding tangents to curves in the plane	(2.11)
Tu 09/10 10 Inverse trigonometric functions	
• 5-minute test: (past exam question on implicit differentiation)	(see here or here)
• Inverse trigonometric functions and their derivatives	(2.12)
• concred enjoying remembra	

• general epistemological remarks

applications of derivatives	
Th 11/10 11 Rates of change I	
• Newton's example revisited: velocity and acceleration	(3.1)
• Exponential decay: Carbon dating	(3.3.1)
Tu 16/10 12 Rates of change II	
• Exponential decay: Newton's law of cooling	(3.3.2)
• Exponential growth: Population growth	(3.3.3)
Th 18/10 ★ mid-term exam	
Tu 23/10 13 Problem solving strategies	
\bullet discussion: mid-term exam question 5 (group A)/question 4 (group B)	
• problem session on related rates (problem sheet)	(3.2)
Th 25/10 14 Taylor polynomials	
• example: linear approximation of $\sin x$ at $x_0 = 0$	(3.4.2)
• example: quadratic approximation of $\cos x$ at $x_0 = 0$	(3.4.3)
• polynomial approximations of differentiable functions at $x_0 = 0$ (Maclauri	in's polynomial) (3.4.4)
• exercise: $e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{k!}$.	
Tu 30/10 15 Taylor's formula and remainders	
• definition: Taylor polynomial as shifted Maclaurin's polynomial	(3.4.4)
• summation notation	(3.4.3)
• example: Taylor's polynomial for $\log x$ at $x_0 = 1$	(3.4.5)
Th 01/11 16 Maxima and minima	
\bullet (rather artificial) applications of Taylor polynomials: error estimates	(3.4.6 - 3.4.7)
\bullet methods for finding local maxima and minima	(3.5.1)
\bullet using second derivatives to determine the type of extrema	(theorem $3.5.5$)
• critical points, singular points and boundary points	(3.5.1)

Tu 06/11 | 17 | Mean value theorem

• theorem: global extrema on closed intervals	(3.5.2)

- Le théorème de Rolle and the mean value theorem (MVT) (2.13)
- application: The equation $2x 1 = \sin(x)$ has a unique solution. (example 2.13.3)

Th 08/11 | 18 | More applications of MVT and curve sketching I (asymptotes)

• corollary: $f'(x) = 0$, $f'(x) < 0$, $f'(x) > 0$ for all $x \in (a, b)$ implies that $f(x)$ is decreasing, increasing on (a, b) , respectively.	s constant, (2.13)
	()
• corollary: $f'(x) = g'(x)$, implies $f(x) = g(x) + c$ for some constant c	(2.13)
• corollary. Remainder in Taylor polynomials with (non-examinable) proof using	; complete

• coronary. Remainder in Taylor polynomials with (non-examinable) proof using complete induction (3.4.8)

(3.6)

• example: sketching rational functions

Tu 13/11 | 19 | Curve sketching II (first and second derivatives)

•	Using the first derivative for graph sketching	(example 3.6.2)
•	Concavity and convexity	(3.6.3)
•	exercise: sketching rational functions	(cp. example $3.6.14$)

• example: sketching functions with singular points (example 3.6.15)

Th 15/11 | 20 | Curve sketching III (symmetries)

• Even and odd functions:	definition and geometric interpretation	(3.6.4)

- exercise: Taylor polynomials of even/odd functions
- periodicity: definition and geometric interpretation (3.6.4)
- example: Sketch $y = \cos^2(x) + 1$
- remark: All periodic functions can be written as sums of sin and cos (google Fourier series)

Tu 20/11 | 21 | Optimisation problems [lecture given by Liam Watson]

•	example: optimisation	of the volume of a rectangular box	(example 3.5.16)

• example: minimal distance between a point and a line in the Euclidean plane (example 3.5.18)

Th 22/11 \mid 22 \mid L'Hôpital's rule

• theorem: existence of extrema of continuous functions with asymptotes at the boundary of the domain (theorem 3.5.17)	
\bullet exercise: minimal distance between a point and a curve in the Euclidean plane (examples) (exam	ample 3.5.19)
• Translating a text question into a math question	(3.5.3)
• l'Hôpital's rule for " $\frac{0}{0}$ " and examples	(3.7.1)
• warning: $\lim_{x \to a} \frac{f'(x)}{g'(x)} = DNE$ does NOT imply $\lim_{x \to a} \frac{f(x)}{g(x)} = DNE$ (warning	s $3.7.7 – 3.7.9$)
towards integral calculus	
Tu $27/11$ 23 Special cases of l'Hôpital's rule and a first glance at antideriva	atives
• l'Hôpital's rule for " $\frac{\pm \infty}{\pm \infty}$ " and examples	(3.7.2a-b)
• more variations of l'Hôpital's rule: type " $0 \cdot \infty$ " and type " $\infty - \infty$ "	(3.7.2c-d)
• even more variations of l'Hôpital's rule: type " 1^{∞} ", type " 0^{0} " and type " ∞^{0} "	(3.7.2e-g)
• definition and examples: antiderivatives	(4.1)
• theorem: antiderivatives are unique up to a constant	(4.1)
Th 29/11 24 More on antiderivatives and review	
• guessing antiderivatives by reading differentiation tables unop-əpisdn	(4.1)
• application of antiderivatives: velocity and position	(4.1.5)
\bullet application of antiderivatives: review of the exponential differential equation	(4.1.6)
• A physicist's proof of the volume formula of a cone (for an alternative pro-	oof, see 4.1.7)

Good luck with the exam!