Overview

Robert-Wagner homology

[RW] constructed an ∞-evaluation of decorations of an annular web ω of index k:

\[\text{Dec}(\omega) \rightarrow \text{Sym}^a \]

It is nondegenerate: \((d)_a = 0 \) if $d = 0$.

Thm [Robert-Wagner]

The htpy type of the chain complex $RW_0(\omega)$ is a (non-trivial) link invariant that categorifies $^a1^n$.

$RW_0(\omega)$ is generated by decorations

\[= \]

It is preserved by zips & unzips (and all foams)

Thm [Robert-Wagner]

The htpy type of the chain complex $RW_0(\omega)$ is a link invariant that categorifies $\Delta_k(t)$. If 2 is invertible, then there is a spectral sequence $KR_\omega(\omega) \Rightarrow RW_0(\omega)$

Gilmore space (revised)

$A(\omega) = \frac{qHH(\text{Dec}(\omega))}{\ker(\text{qbase})}$

path relations, dot@base=0

power series in q starting at negative powers

$w(\gamma) = \text{products of all variables from edges pointing into/out of the red region}$

Think of γ as a curve in an annulus that bounds the annular region without the basepoint.

Gilmore complex: $Gilm(\omega) := A(\omega)$

$Gilm(\omega) \otimes \mathbb{Z}_2$ is quasi-isomorphic to $\overline{CFK}(\omega) \otimes \mathbb{Z}_2[q^{\pm 1}]$

Rmk

The original construction uses another normalization of variables and is defined only for resolutions of a braid diagram.

Towards a spectral sequence from HOMFLYPT to HFK

Link homology - general framework

1. Find a braid diagram of a knot
2. Construct the cube of resolutions
3. Sprinkle signs to make squares anticommute
4. Flatten along diagonals

Fact The htpy type of $[\beta]$ is invariant under R_2 & R_3 moves and conjugation.

HOMFLYPT homology

A decoration of a web ω: a collection of symmetric polynomials on edges

\[aP \in \text{Sym}_a \]

Special case $a=1$:

The space of decorations:

\[\text{Dec}(\omega) = \{ \text{decorations of } \omega \} \]

vertex relation

\[\text{Sym}_{a+b} \leq \text{Sym}_a \otimes \text{Sym}_b \]

Notes

Pseudo-completion

Cannot specialize $Gilm(K)$ at $q=1$, because $1-q$ is invertible.

$A(\omega)$ can be constructed over $\mathbb{Z}[q^{\pm 1}]$, but it is too large.

A fix: kill what vanishes in the completion!

\[A^p(\omega) := \frac{A(\omega, \mathbb{Z}[q^{\pm 1}])}{\ker(A(\omega, \mathbb{Z}(q^{\pm 1}) \rightarrow A(\omega, \mathbb{Z}[q^{\pm 1}]))} \]

$P(K) := A^p(\beta)$

Pseudo-completion

HOMFLYPT space: $KR_\omega(\omega) := HH_\omega(\mathbb{Z}[x_1, \ldots, x_n], \text{Dec}(\omega))$

Note: $HH_\omega(\ldots) = \text{Dec}(\omega)$

Thm (Khovanov-Rozansky)

The htpy type of the chain complex $KR_\omega(\omega) := (KR_\omega(\omega))$ is a link invariant that categorifies the HOMFLYPT polynomial.

The spectral sequence $RW_0 \Rightarrow HFK$ (over \mathbb{Z}_2)

We have $\overline{HFK}(\omega) \otimes \mathbb{Z}_2[q^{\pm 1}] \cong Gilm(K) \cong P(K) \otimes \mathbb{Z}_2[q^{\pm 1}]$, so that all homology have the same rank. Thus

\[\overline{HFK}(\omega) \cong P(K) \otimes \mathbb{Z}_2 \]

Because $\mathbb{Z}_2[q^{\pm 1}]$ is PID, there is a Bockstein spectral sequence $RW_0(\omega) \cong P(K) \otimes \mathbb{Z}_2$. In particular, there is a spectral sequence $KR_\omega(\omega) \Rightarrow P(K)|_{q=1}$ when 2 is invertible.

Notes

$P(K) \otimes \mathbb{Z}_2[q^{\pm 1}] = Gilm(K) \otimes \mathbb{Z}_2 = \overline{CFK}(\omega) \otimes \mathbb{Z}_2[q^{\pm 1}]$

$P(K)$ can be specialized at $q=1$.

Thm [BPRW] $P(K)_{q=1} \cong RW_0(\omega)$. In particular, there is a spectral sequence $KR_\omega(\omega) \Rightarrow P(K)|_{q=1}$ when 2 is invertible.

Towards a spectral sequence from HOMFLYPT to HFK

j/w Anna Beliakova, Louis-Hadrien Robert, Emmanuel Wagner